un 2 00 2 QUANTUM BRUHAT GRAPH AND SCHUBERT POLYNOMIALS

نویسنده

  • ALEXANDER POSTNIKOV
چکیده

The quantum Bruhat graph, which is an extension of the graph formed by covering relations in the Bruhat order, is naturally related to the quantum cohomology ring of G/B. We enhance a result of Fulton and Wood-ward by showing that the minimal monomial in the quantum parameters that occurs in the quantum product of two Schubert classes has a simple interpretation in terms of directed paths in this graph. We define path Schubert polynomials, which are quantum cohomology analogues of skew Schubert polynomials recently introduced by Lenart and Sottile. They are given by sums over paths in the quantum Bruhat graph of type A. The 3-point Gromov-Witten invariants for the flag manifold are expressed in terms of these polynomials. This construction gives a combinatorial description for the set of all monomials in the quantum parameters that occur in the quantum product of two Schubert classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Bruhat Graph and Schubert Polynomials

The quantum Bruhat graph, which is an extension of the graph formed by covering relations in the Bruhat order, is naturally related to the quantum cohomology ring of G/B. We enhance a result of Fulton and Woodward by showing that the minimal monomial in the quantum parameters that occurs in the quantum product of two Schubert classes has a simple interpretation in terms of directed paths in thi...

متن کامل

Quantum Cohomology of G/p and Homology of Affine Grassmannian

Let G be a simple and simply-connected complex algebraic group, P ⊂ G a parabolic subgroup. We prove an unpublished result of D. Peterson which states that the quantum cohomology QH∗(G/P ) of a flag variety is, up to localization, a quotient of the homology H∗(GrG) of the affine Grassmannian GrG of G. As a consequence, all three-point genus zero Gromov-Witten invariants of G/P are identified wi...

متن کامل

Enumeration of Bruhat intervals between nested involutions in Sn

For any n ≥ 2, let Sn be the symmetric group of n elements equipped with the Bruhat ordering ≤; see e.g. [3, 6, 8, 21, 22]. One of the most celebrated combinatorial and algebraic problems is to study its Bruhat graph and its Bruhat intervals [a, b] = {z ∈ Sn : a ≤ z ≤ b} for a, b ∈ Sn; see e.g. [1, 7, 12, 15]. These are intimately related with the Kazhdan–Lusztig polynomials of Sn and the algeb...

متن کامل

Skew Schubert Polynomials

We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schub...

متن کامل

Schubert polynomials and k - Schur functions ( Extended abstract )

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type A by a Schur function can be understood from the multiplication in the space of dual k-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the r-Bruhat order given by Bergeron-Sottil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005